Print

Drug-Drug Interactions

(Last updated July 14, 2016; last reviewed July 14, 2016)

Pharmacokinetic (PK) drug-drug interactions between antiretroviral (ARV) drugs and concomitant medications are common, and may lead to increased or decreased drug exposure. In some instances, changes in drug exposure may increase toxicities or affect therapeutic responses. When prescribing or switching one or more drugs in an ARV regimen, clinicians must consider the potential for drug-drug interactions—both those that affect ARVs and those that ARVs affect on other drugs a patient is taking. A thorough review of concomitant medications in consultation with a clinician with expertise in ARV pharmacology can help in designing a regimen that minimizes undesirable interactions. Recommendations for managing a particular drug interaction may differ depending on whether a new ARV is being initiated in a patient on a stable concomitant medication or a new concomitant medication is being initiated in a patient on a stable ARV regimen. The magnitude and significance of interactions are difficult to predict when several drugs with competing metabolic pathways are prescribed concomitantly. When prescribing interacting drugs is necessary, clinicians should be vigilant in monitoring for therapeutic efficacy and/or concentration-related toxicities.

#1546 Drug Drug Interactions
August 2015 - Feedback

Clinicians should be vigilant of HIV drug-drug interactions. The University of Liverpool host the useful resource: UK Drug Interactions Resource

Mechanisms of Pharmacokinetic Interactions

PK interactions may occur during absorption, metabolism, or elimination of the ARV and/or the interacting drugs. The most common mechanisms of interactions are described below and listed for each ARV drug in Table 17.

Pharmacokinetic Interactions Affecting Drug Absorption

The extent of oral absorption of drugs can be affected by the following mechanisms:

  • Acid reducing agents, such as proton pump inhibitors, H2 antagonists, or antacids, can reduce the absorption of ARVs that require gastric acidity for optimal absorption (i.e., atazanavir [ATV] and rilpivirine [RPV]).
  • Products that contain polyvalent cations, such as aluminum, calcium, magnesium-containing antacids, supplements, or iron products, can bind to integrase inhibitors (INSTI) and reduce absorption of these ARV agents.
  • Drugs that induce or inhibit the enzyme CYP3A4 or efflux transporter p-glycoprotein in the intestines may reduce or promote the absorption of other drugs.

Pharmacokinetic Interactions Affecting Hepatic Metabolism

Two major enzyme systems are most frequently responsible for clinically significant drug interactions.

  1. The cytochrome P450 enzyme system is responsible for the metabolism of many drugs, including the non-nucleoside reverse transcriptase inhibitors (NNRTI), protease inhibitors (PI), CCR5 antagonist maraviroc (MVC), and the INSTI elvitegravir (EVG). Cytochrome P450 3A4 (CYP3A4) is the most common enzyme responsible for drug metabolism, though multiple enzymes may be involved in the metabolism of a drug. ARVs and concomitant medications may be inducers, inhibitors, and/or substrates of these enzymes.
  2. The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) 1A1 enzyme is the primary enzyme responsible for the metabolism of the INSTIs dolutegravir (DTG) and raltegravir (RAL). Drugs that induce or inhibit the UGT enzyme can affect the PKs of these INSTIs.

Pharmacokinetic Enhancers (Boosters)

PK enhancing is a strategy used to increase exposure of an ARV by concomitantly administering a drug that inhibits the enzymes that metabolize the ARV. Currently in clinical practice, two agents are used as PK enhancers: ritonavir (RTV) and cobicistat (COBI). Both of these agents are potent inhibitors of the CYP3A4 enzyme, resulting in higher drug exposures of the coadministered ARV metabolized by this pathway. Importantly, RTV and COBI may have different effects on other CYP or UGT metabolizing enzymes and drug transporters. Complex or unknown mechanisms of PK-based interactions preclude extrapolation of RTV drug interactions to certain COBI interactions, such as interactions with warfarin, phenytoin, voriconazole, oral contraceptives, certain HMG-CoA reductase inhibitors (or statins), and other drugs.

Other Mechanisms of Pharmacokinetic Interactions

Knowledge of drug transporters is evolving, elucidating additional drug interaction mechanisms. For example, DTG decreases the renal clearance of metformin by inhibiting organic anion transporters in renal tubular cells. Similar transporters aid hepatic, renal, and biliary clearance of drugs and may be susceptible to drug interactions. ARVs and concomitant medications may be inducers, inhibitors, and/or substrates of these drug transporters.

Tables 18–20b provide information on known or suspected drug interactions between ARV agents and commonly prescribed medications based on published PK data or information from product labels. The tables provide general guidance on drugs that should not be coadministered and recommendations for dose modifications or alternative therapy.

Tables (Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents (Tables Only))

Click here to view:

  • Table 17 (Mechanisms of Antiretroviral-Associated Drug Interactions)
  • Table 18 (Drugs that should not be used with Antiretroviral Agents Due to Proven or Predicted Pharmacokinetic Interactions)
  • Table 19a (Drug Interactions between Protease Inhibitors and Other Drugs)
  • Table 19b (Drug Interactions between Non-Nucleoside Reverse Transcriptase Inhibitors and Other Drugs)
  • Table 19c (Drug Interactions between Non-Nucleoside Reverse Transcriptase Inhibitors and Other Drugs (Including Antiretroviral Agents))
  • Table 19d (Drug Interactions Between Integrase Strand Transfer Inhibitors and Other Drugs)
  • Table 19e (Drug Interactions between CCR5 Antagonist (Maraviroc) and Other Drugs (Including Antiretroviral Agents))
  • Table 20a (Interactions between Non-Nucleoside Reverse Transcriptase Inhibitors and Protease Inhibitorsa) and
  • Table 20b (Interactions between Integrase Strand Transfer Inhibitors and Non-Nucleoside Reverse Transcriptase Inhibitors or Protease Inhibitors).

Table 17. Mechanisms of Antiretroviral-Associated Drug Interactions

Pharmacokinetic interactions may occur during absorption, metabolism, or elimination of the ARV and/or the interacting drugs. This table does not include a comprehensive list of all possible mechanisms of interactions for individual ARV drugs (e.g., transporters); however, the table lists the most common mechanisms of interactions and focuses on absorption and CYP and UGT1A1 mediated interactions.

Note: Ellipses ( … ) indicate that there are no clinically relevant interactions by these mechanisms.

table17 pg1

table17 pg2

Table 18. Drugs that should not be used with selected Antiretroviral Agents due to proven or predicted Pharmacokinetic Interactions

table18 pg1 

table18 pg2a

Table 19 (Table 19a - 19e)

Table 19a. Drug Interactions Between Protease Inhibitors and Other Drugs

 

table19a pg3

table19a pg4

table19a pg5

table19a pg6

table19a pg7

table19a pg8

table19a pg9

table19a pg10

table19a pg11

table19a pg13

table19a pg14

table19a pg15

Table 19b. Drug Interactions between Non-Nucleoside Reverse Transcriptase Inhibitors and Other Drugs

table19b pg1

 table19b pg2

table19b pg3

table19b pg4

table19b pg5

table19b pg6

table19b pg7

Table 19c. Drug Interactions between Non-Nucleoside Reverse Transcriptase Inhibitors and Other Drugs

table19c pg1

table19c pg2

table19c pg3

Table 19d. Drug Interactions between Integrase Strand Transfer and Other Drugs

table19d pg1

table19d pg2

table19d pg3

table19d pg4

table19d pg5

table19d pg6

table19d pg7

table19d pg8

table19d pg9

table19d pg10

table19d pg11

Table 19e. Drug Interactions Between CCR5 Antagonist (Maraviroc) and Other Drugs

table19e pg1

table19e pg2

table19e pg3

Table 20 (Tables 20a - 20b)

Table 20a. Interactions Between Non-Nucleoside Reverse Transcriptase Inhibitors and Protease Inhibitors

table20a pg1a

table20a pg2a

table20b pg2

table20a pg3

Table 20b. Interactions between Integrase Strand Transfer Inhibitors and Non-Nucleoside Reverse Transcriptase Inhibitors or Protease Inhibitors

table20b pg1

table20b pg2

table20b pg3

table20b pg4

 

ASHM - Supporting the HIV, Viral Hepatitis and Sexual Health Workforce