Women and HIV

(Last updated:14/7/2016; last reviewed:14/7/2016)

Panel's Recommendations

  • Antiretroviral therapy (ART) is recommended for all women living with HIV to improve their health and to reduce the risk of HIV transmission to HIV-uninfected sex partners (AI).
  • In pregnant women, an additional goal of therapy is to maintain a viral load below the limit of detection throughout pregnancy to reduce the risk of transmission to the fetus and newborn (AI).
  • When selecting an antiretroviral (ARV) combination regimen for a pregnant woman, clinicians should consider the available safety, efficacy, and pharmacokinetic (PK) data on use during pregnancy for each agent. The risks and benefits of ARV use during pregnancy should be discussed with all women (AIII).
  • For women taking ARV drugs that have significant PK interactions with hormonal contraceptives, an alternative or additional effective contraceptive method to prevent unintended pregnancy is recommended (AIII). Switching to an ARV drug without interactions with hormonal contraceptives may also be considered (BIII).
  • Nonpregnant women of childbearing potential should undergo pregnancy testing before initiation of efavirenz (EFV) and receive counseling about the potential risk to the fetus and desirability of avoiding conception while on EFV-based regimens (AIII).
  • When designing a regimen for a pregnant woman, clinicians should consult the most current Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States (Perinatal Guidelines) (AIII).
  • Regimens that do not include EFV should be considered in women who are planning to become pregnant or are sexually active and not using effective contraception (BIII).
  • Women on a suppressive regimen containing EFV who become pregnant and present to antenatal care during the first trimester can continue EFV throughout pregnancy (CIII)
Rating of Recommendations: A = Strong; B = Moderate; C = Optional
Rating of Evidence: I = Data from randomized controlled trials; II = Data from well-designed nonrandomized trials or observational cohort studies with long-term clinical outcomes; III = Expert opinion

This section provides discussion of some basic principles and unique considerations to follow when caring for HIV-infected women, including during pregnancy. Clinicians who care for pregnant women should consult the current Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States (Perinatal Guidelines) for a more in-depth discussion and guidance on managing these patients

Gender Considerations in Antiretroviral Therapy

In general, studies to date have not shown gender differences in virologic responses to antritretroviral therapy (ART).1-4 However, there are limited data showing that pharmacokinetics (PKs) for some antiretroviral (ARV) drugs may differ between men and women, possibly because of variations between men and women in factors such as body weight, plasma volume, gastric emptying time, plasma protein levels, cytochrome P (CYP) 450 activity, drug transporter function, and excretion activity.5-7

Adverse Effects:

Several studies have suggested that gender may influence the frequency, presentation, and severity of some ARV-related adverse events. Most notably, women are more likely to develop severe symptomatic hepatotoxicity with nevirapine (NVP) use,8,9 and are more likely to develop symptomatic lactic acidosis with prolonged use of older nucleoside reverse transcriptase inhibitors (NRTIs) such as zidovudine (ZDV), stavudine (d4T), and didanosine (ddI).10 These agents are no longer recommended for use in people with HIV in the United States; although ZDV is still administered intravenously (IV) to women during delivery, it is not generally recommended for long-term use.

Some studies have compared women and men in relation to metabolic complications associated with ARV use. Over 96 weeks following initiation of ART, women with HIV are less likely to have decreases in limb fat but more likely to have decreases in bone mineral density (BMD) than men with HIV.11,12 Women have an increased risk of osteopenia, osteoporosis, and fractures, particularly after menopause, and this risk is exacerbated by HIV and ART.13-16 ART regimens that contain tenofovir disoproxil fumarate (TDF), ritonavirboosted protease inhibitors (PI/r), or both are associated with a significantly greater loss of BMD than regimens containing other NRTIs and raltegravir (RAL).17-20 Abacavir (ABC), NRTI-sparing regimens, and tenofovir alafenamide (TAF; a new oral tenofovir prodrug that induces less bone loss than TDF) may be considered as alternatives to TDF in patients who are at risk of osteopenia or osteoporosis. Recommendations for management of bone disease in people with HIV have been published.21


#1834 HPV Screening in Women with HIV
June 2018 - Feedback

In Australia in 2017 the National Cervical Screening Program (NCSP) guidelines are changing.  For the general population, cytological screening will be replaced with 5 yearly HPV testing, with reflex liquid-based cytology and genotyping for positive samples.

HIV positive women have a higher incidence of cervical cancer and HPV-associated precancerous changes, and this incidence does not appear to decline with the introduction of antiretroviral therapy. [1,2]

WHO guidelines recommend that HIV positive women be screened with HPV testing every 3 years. [3] Recent US guidelines recommend 3-yearly co-testing with HPV and cytology for HIV-positive women aged 30 years or older.  However, review of the evidence suggests that co-testing offers little additional benefit.

The NCSP therefore recommends 3 yearly HPV screening for HIV positive women, in accordance with WHO guidelines and supported by US guidelines.

Any woman with a positive oncogenic HPV result should be referred for colposcopy, and consideration should be given to examination of the entire lower anogenital tract, as the same risk factors apply for cervical, vaginal, vulval, perianal and anal lesions.

The Australian guidelines for cervical screening in immunodeficient and HIV positive women can be found here: 



[1] Engels EA, etal. International Journal of Cancer 2008 1;123(1):187-94

[2] Adler DH. The impact of HAART on HPV-related cervical disease. Curr HIV Res 2010 Oct;8(7):493-7

[3] World Health Organisation. WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. Geneva: WHO; 2013

 Women with HIV of Childbearing Potential

Please follow this link for new (May 2018) Recommendations Regarding the Use of Dolutegravir in Adults and Adolescents with HIV who are Pregnant or of Child Bearing Potential.

All women with HIV of childbearing potential should be offered comprehensive reproductive and sexual health counseling and care as part of routine primary medical care. Topics for discussion should include safe sex practices, reproductive desires and options for conception, the HIV status of sex partner(s), and use of effective contraception to prevent unintended pregnancy. Counseling should also include discussion of special considerations pertaining to ARV use when using hormonal contraceptives, when trying to conceive, and during pregnancy (see the Perinatal Guidelines).

Reproductive Options for Serodiscordant Couples

A women who wishes to conceive with a serodiscordant male partner should be informed of options to prevent sexual transmission of HIV while attempting conception. Interventions include screening and treating both partners for sexually transmitted infections (STIs), ART to maximally suppress and maintain the viral load of the partner with HIV, use of pre-exposure prophylaxis by the uninfected partner,22-24 male circumcision, and/or self-insemination with the HIV-uninfected partner’s sperm during the periovulatory period of the woman with HIV.25

Efavirenz (EFV) is teratogenic in nonhuman primates. Nonpregnant women of childbearing potential should have a pregnancy test before starting EFV and be advised of potential EFV-related risks to the fetus and the desirability of avoiding conception while on an EFV-based regimen (AIII). Regimens that do not include EFV should be considered in women who are planning to become pregnant or who are sexually active and not using effective contraception (BIII). The most vulnerable period in fetal organogenesis is early in gestation, usually before pregnancy is recognized. Efavirenz use after the first 8 weeks of pregnancy appears safe.

Hormonal Contraception

Safe and effective reproductive health and family planning services to prevent unintended pregnancies and perinatal transmission of HIV are an essential component of care for women with HIV of childbearing age. These women should receive ongoing counseling on reproductive issues. Regardless of hormonal contraceptive use, women with HIV should be advised to consistently use condoms (male or female) during sex and adhere to an HIV regimen that effectively maintains viral suppression. Both strategies are crucial to prevent transmission of HIV to uninfected partners and to protect against infection with other STIs. The following are some considerations when hormonal contraceptives are used.

Drug-Drug Interactions

PK interactions between ARV drugs and hormonal contraceptives may reduce contraceptive efficacy. However, there are limited clinical data regarding drug interactions between ARVs and hormonal contraceptives and the clinical implications of these interactions are unclear. The magnitudes of changes in drug levels that may reduce contraceptive efficacy or increase adverse effects are unknown.

  • Combined Oral Contraceptives (COCs): Several PIs, EFV, and elvitegravir/cobicistat (EVG/c)- based regimens have drug interactions with COCs. Interactions include either a decrease or an increase in blood levels of ethinyl estradiol, norethindrone, or norgestimate (see Tables 18a, 18b, and 18d), which potentially decreases contraceptive efficacy or increases estrogen- or progestin-related adverse effects (e.g., thromboembolism). EFV can decrease etonogestrel bioavailability and plasma progestin concentrations of COCs containing ethinyl estradiol and norgestimate.26 Several PI/r and EVG/c decrease oral contraceptive estradiol levels.27-30 Several PK studies have shown that ETR, RPV, and NVP use did not significantly affect estradiol or progestin levels in women with HIV using COCs.31-33
  • Injectable Contraceptives: Small studies of women with HIV receiving injectable depotmedroxyprogesterone acetate (DMPA) while on ART showed no significant interactions between DMPA and EFV, lopinavir/ritonavir (LPV/r), NVP, nelfinavir (NFV), or NRTI drugs.34-37
  • Contraceptive Implants: Contraceptive failure of the etonogestrel implant in women on EFV-based therapy has been reported.38,39 Studies of women with levonorgestrel- and etonogestrel-releasing implants reported that participants receiving EFV-based ART had decreased bioavailability of levonorgestrel and etonogestrel.40,41 These PK studies did not identify any change in hormone concentrations when the implants were used in women taking NVP40 or LPV/r.41 Similarly, two retrospective cohort evaluations conducted in Swaziland and Kenya showed an increased risk of contraceptive failure in women using contraceptive implants and receiving EFV.42,43

Concerns about PK interactions between oral or implantable hormonal contraceptives and ARVs should not prevent clinicians from prescribing hormonal contraceptives for women on ART who prefer this contraceptive method. However, an alternative or additional effective contraceptive method is recommended when there are significant drug interactions between hormonal contraceptives and ARVs (see drug interaction Tables 18a, 18b, and 18d and the Perinatal Guidelines).

Risk of HIV Acquisition and Transmission

Studies have produced conflicting data on the association between hormonal contraception and the risk of acquisition of HIV.44 Most of the retrospective studies were done in the setting where the partners with HIV were not taking ART. A retrospective secondary analysis of two studies of serodiscordant couples in Africa in which the partner with HIV was not receiving ART found that women using hormonal contraception (the majority using injectable DMPA) had a two-fold increased risk of acquiring or transmitting HIV. Women with HIV using hormonal contraception had higher genital HIV RNA concentrations than those not using hormonal contraceptives.45 Oral contraceptive use was not significantly associated with transmission of HIV; however, the number of women using oral contraceptives in this study was insufficient to adequately assess risk. A World Health Organization expert group reviewed all available evidence regarding hormonal contraception and HIV transmission to a partner without HIV and recommended that women living with HIV can continue to use all existing hormonal contraceptive methods without restriction.46 Further research is needed to definitively determine if hormonal contraceptive use is an independent risk factor for acquisition and transmission of HIV, particularly in the setting of ART. Regardless, the potential association of hormonal contraception use and HIV transmission in the absence of ART underscores the importance of ART-induced viral suppression to reduce transmission risk.

Intrauterine devices (IUDs) appear to be a safe and effective contraceptive option for women with HIV.47-49 Although studies have focused primarily on nonhormone-containing IUDs (e.g., copper IUD), several small studies have found that levonorgestrel-releasing IUDs are also safe and not associated with increased genital tract shedding of HIV.50-52

Pregnant Women

Clinicians should review the Perinatal Guidelines1 for a detailed discussion of the management of HIV-infected pregnant women. The use of combination ARV regimens is recommended for all HIV-infected pregnant women, regardless of virologic, immunologic, or clinical parameters (AI). Pregnant women with HIV should be counseled regarding the known benefits and risks of ARV use during pregnancy to the woman, fetus, and newborn. Women should be counseled and strongly encouraged to receive ART for their own health and that of their infants. Open, nonjudgmental and supportive discussion should be used to encourage women to adhere to care.

#1835 HIV and pregnancy in Australia
June 2018- Feedback

The Australian Paediatric Surveillance Unit collects data on perinatal HIV exposure in Australia through a voluntary notification system involving paediatricians and infectious diseases specialists. This data is reported in the HIV/AIDS, Viral Hepatitis and Sexually Transmissible Infections in Australia Annual Surveillance Report. This surveillance does not include follow up data on infants exposed to antiretroviral therapy like that collected by the Antiretroviral Pregnancy Registry in the United States.

Overwhelmingly, HIV positive women in Australia choose to take ART during their pregnancy, to prevent transmission of the HIV infection to their baby, as well as to protect their own health in many cases.
It is essential that the mother discuss the issue of perinatal and postpartum ART with medical and nursing staff managing the pregnancy and baby to ensure that there is access to accurate information so that informed decisions regarding interventions to reduce transmission of HIV to the baby can be made. It is important for HIV positive women to understand that they may not have the legal right to refuse ART for their child during the post-partum period. A useful patient resource is: Treat yourself right – information for women with HIV and AIDS
Testing for HIV infection in the neonate may vary between states and territories depending on local availability. The test may include a p24 antigen, HIV RNA or HIV proviral DNA. It is advised that you speak with your local reference laboratory

- NSW State Reference Lab for HIV/AIDS, St Vincent's Hospital, Sydney, NSW (02) 8382 9178
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, WA (08) 9224 2899
- HIV Characterisation Lab, Victorian Infectious Diseases Reference Laboratory Melbourne, VIC (03) 9342 9625

In Victoria the Royal Women's Hospital provides assisted reproductive technology options for HIV serodiscordant couples wanting to conceive and advice on HIV and pregnancy. The service is available for all Victorians and treatment of interstate patients is considered on a case by case basis. The service is also happy to provide advice and support to interstate colleagues as required: 


Prevention of Perinatal Transmission of HIV.

The use of ARVs and the resultant the reduction of HIV RNA levels decrease perinatal transmission of HIV53-55 The goal of ARV use is to achieve maximal and sustained suppression of HIV RNA levels during pregnancy. Long-term follow-up is recommended for all infants born to women who have received ARVs during pregnancy, regardless of the infant’s HIV status (see the Perinatal Guidelines1).

ARV Regimen Considerations.

Pregnancy should not preclude the use of optimal ARV regimens. As in nonpregnant individuals, genotypic resistance testing is recommended for all pregnant women before ARV initiation (AIII) and for pregnant women with detectable HIV RNA while on ART (AI). However, ART initiation should not be delayed in pregnant women pending genotypic resistance testing results. The ARV regimen can be modified, if necessary, once the resistance testing results are available (BIII). Unique considerations that influence recommendations on ARVs to use to treat pregnant women with HIV include the following:

  • Physiologic changes associated with pregnancy that potentially result in changes in PKs, which may affect ARV dosing at different stages of pregnancy;
  • Potential ARV-associated adverse effects in pregnant women and the potential for adherence to a particular regimen during pregnancy; and
  • Potential short- and long-term effects of an ARV on the fetus and newborn, which are unknown for many drugs.

ART is considered the standard of care for pregnant women with HIV, both to treat HIV infection and prevent perinatal transmission of HIV. If a pregnant woman receiving an EFV-based regimen presents to prenatal care during the first trimester with suppressed HIV RNA, EFV can be continued. This is because the risk of fetal neural tube defects is restricted to the first 5 to 6 weeks of pregnancy and pregnancy is rarely recognized before 4 to 6 weeks of pregnancy. Unnecessary changes in ARV drugs during pregnancy may be associated with loss of viral control and increased risk of perinatal transmission. Detailed recommendations on ARV choice in pregnancy are discussed in detail in the Perinatal Guidelines.

If maternal HIV RNA is ≥1,000 copies/mL (or unknown) near delivery, IV infusion of ZDV during labor is recommended regardless of the mother’s antepartum regimen and resistance profile, and the mode of delivery (AI). Administration of combination ART should continue during labor and before a cesarean delivery (oral medications can be continued with sips of water).

Clinicians who are treating pregnant women with HIV are strongly encouraged to report cases of prenatal exposure to ARVs (either administered alone or in combinations) to the Antiretroviral Pregnancy Registry ( The registry collects observational data regarding exposure to Food and Drug Administration (FDA)-approved ARV drugs during pregnancy to assess potential teratogenicity. Analysis of the Antiretroviral Pregnancy Registry data indicates that there is no clear association between first-trimester exposure to any ARV drug and increased risk of birth defects. For more information regarding selection and use of ART during pregnancy, refer to the Perinatal Guidelines.

Postpartum Management

Following delivery, clinical, immunologic, and virologic follow-up should continue as recommended for non pregnant adults and adolescents. Because maternal ART reduces but does not eliminate the risk of transmission of HIV in breast milk and postnatal transmission can occur despite maternal ART, women should also be counseled to avoid breastfeeding.1 HIV-infected women should avoid pre-mastication of food fed to their infants because the practice has been associated with transmission of HIV from mother to child.39 Considerations regarding continuation of ART for maternal therapeutic indications are the same as those for ART use in other non-pregnant individuals. For more information regarding postpartum discontinuation of ART, refer to the Perinatal Guidelines.1

Several studies have demonstrated that adherence to ART may decline in the postpartum period.58-60 Clinicians caring for women postpartum who are receiving ART should specifically address adherence, including an evaluation of specific facilitators and barriers to adherence. Clinicians may recommend an intervention to  improve adherence (see Adherence to Antiretroviral Therapy).


  1. Collazos J, Asensi V, Carton JA. Sex differences in the clinical, immunological and virological parameters of HIV-infected patients treated with HAART. AIDS. 2007;21(7):835-843. Available at
  2. Fardet L, Mary-Krause M, Heard I, Partisani M, Costagliola D. Influence of gender and HIV transmission group on initial highly active antiretroviral therapy prescription and treatment response. HIV Med. 2006;7(8):520-529. Available at
  3. Currier J, Averitt Bridge D, Hagins D, et al. Sex-based outcomes of darunavir-ritonavir therapy: a single-group trial. Ann Intern Med. 2010;153(6):349-357. Available at
  4. Rosin C, Elzi L, Thurnheer C, et al. Gender inequalities in the response to combination antiretroviral therapy over time: the Swiss HIV Cohort Study. HIV Med. May 2015;16(5):319-325. Available at pubmed/25329751.

  5. Gandhi M, Aweeka F, Greenblatt RM, Blaschke TF. Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol. 2004;44:499-523. Available at
  6. Floridia M, Giuliano M, Palmisano L, Vella S. Gender differences in the treatment of HIV infection. Pharmacol Res. 2008;58(3-4):173-182. Available at
  7. Ofotokun I, Chuck SK, Hitti JE. Antiretroviral pharmacokinetic profile: a review of sex differences. Gend Med. 2007;4(2):106-119. Available at
  8. Baylor MS, Johann-Liang R. Hepatotoxicity associated with nevirapine use. J Acquir Immune Defic Syndr. 2004;35(5):538-539. Available at
  9. Wit FW, Kesselring AM, Gras L, et al; for the ATHENA cohort study. Discontinuation of nevirapine because of hypersensitivity reactions in patients with prior treatment experience, compared with treatment-naive patients Clin Infect Dis. 2008;46(6):933-940. Available at
  10. Lactic Acidosis International Study Group LAISG. Risk factors for lactic acidosis and severe hyperlactataemia in HIV1-infected adults exposed to antiretroviral therapy. AIDS. Nov 30 2007;21(18):2455-2464. Available at http://www.ncbi.
  11. McComsey GA, Kitch D, Sax PE, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. Clin Infect Dis. Jul 15 2011;53(2):185-196. Available at 
  12. Galli M, Veglia F, Angarano G, et al. Gender differences in antiretroviral drug-related adipose tissue alterations. Women are at higher risk than men and develop particular lipodystrophy patterns. J Acquir Immune Defic Syndr. Sep 1 2003;34(1):58-61. Available at;db=PubMed&dopt=Citati on&list_uids=14501794.
  13. Yin M, Dobkin J, Brudney K, et al. Bone mass and mineral metabolism in HIV+ postmenopausal women. Osteoporos Int. Nov 2005;16(11):1345-1352. Available at;db=PubM ed&dopt=Citation&list_uids=15754081.
  14. Brown TT, Qaqish RB. Response to Berg et al. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. Aug 20 2007;21(13):1830-1831. Available at gi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17690589.
  15. Sharma A, Shi Q, Hoover DR, et al. Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the Women’s Interagency HIV study. J Acquir Immune Defic Syndr. Sep 1 2015;70(1):54- 61. Available at 
  16. Grant PM, Kitch D, McComsey GA, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis. Nov 2013;57(10):1483-1488. Available at http://www.ncbi.nlm.nih. gov/pubmed/23943825. 
  17. Stellbrink HJ, Orkin C, Arribas JR, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. Oct 15 2010;51(8):963-972. Available at;db=PubMed&dopt=Cit ation&list_uids=20828304.
  18. Martin A, Bloch M, Amin J, et al. Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavirlamivudine: a randomized, 96-week trial. Clin Infect Dis. Nov 15 2009;49(10):1591-1601. Available at http://www.ncbi.
  19. Duvivier C, Kolta S, Assoumou L, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. Apr 27 2009;23(7):817-824. Available at 
  20. Brown TT, Moser C, Currier JS, et al. Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. J Infect Dis. Oct 15 2015;212(8):1241-1249. Available at 
  21. Brown TT, Hoy J, Borderi M, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis. Apr 15 2015;60(8):1242-1251. Available at 
  22. Heffron R, Pintye J, Matthews LT, Weber S, Mugo N. PrEP as peri-conception HIV prevention for women and men. Curr HIV/AIDS Rep. Mar 18 2016. Available at 
  23. Vernazza PL, Graf I, Sonnenberg-Schwan U, Geit M, Meurer A. Preexposure prophylaxis and timed intercourse for HIVdiscordant couples willing to conceive a child. AIDS. Oct 23 2011;25(16):2005-2008. Available at http://www.ncbi.nlm.
  24. Whetham J, Taylor S, Charlwood L, et al. Pre-exposure prophylaxis for conception (PrEP-C) as a risk reduction strategy in HIV-positive men and HIV-negative women in the UK. AIDS Care. 2014;26(3):332-336. Available at http://www.ncbi.
  25. Lampe MA, Smith DK, Anderson GJ, Edwards AE, Nesheim SR. Achieving safe conception in HIV-discordant couples: the potential role of oral preexposure prophylaxis (PrEP) in the United States. Am J Obstet Gynecol. Jun 2011;204(6):488 e481-488. Available at 
  26. Sevinsky H, Eley T, Persson A, et al. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther. 2011;16(2):149-156. Available at http://
  27. Vogler MA, Patterson K, Kamemoto L, et al. Contraceptive efficacy of oral and transdermal hormones when coadministered with protease inhibitors in HIV-1-infected women: pharmacokinetic results of ACTG trial A5188. J Acquir Immune Defic Syndr. Dec 2010;55(4):473-482. Available at 
  28. Zhang J, Chung E, Yones C, et al. The effect of atazanavir/ritonavir on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy women. Antivir Ther. 2011;16(2):157-164. Available at http://
  29. Food and Drug Administration. Stribild (package insert). Available at label/2012/203100s000lbl.pdf. Accessed May 16, 2016. 2016.
  30. Food and Drug Administration. Genvoya (package insert). Gilead. Available at drugsatfda_docs/label/2015/207561s000lbl.pdf. Last accessed May 16, 2016.
  31. Scholler-Gyure M, Kakuda TN, Woodfall B, et al. Effect of steady-state etravirine on the pharmacokinetics and pharmacodynamics of ethinylestradiol and norethindrone. Contraception. Jul 2009;80(1):44-52. Available at http://www.
  32. Crauwels HM, van Heeswijk RP, Buelens A, Stevens M, Hoetelmans RM. Lack of an effect of rilpivirine on the pharmacokinetics of ethinylestradiol and norethindrone in healthy volunteers. Int J Clin Pharmacol Ther. Feb 2014;52(2):118-128. Available at 
  33. Stuart GS, Moses A, Corbett A, et al. Combined oral contraceptives and antiretroviral PK/PD in Malawian women: pharmacokinetics and pharmacodynamics of a combined oral contraceptive and a generic combined formulation antiretroviral in Malawi. J Acquir Immune Defic Syndr. Oct 1 2011;58(2):e40-43. Available at http://www.ncbi.nlm.nih. gov/pubmed/21921726.
  34. Cohn SE, Park JG, Watts DH, et al. Depo-medroxyprogesterone in women on antiretroviral therapy: effective contraception and lack of clinically significant interactions. Clin Pharmacol Ther. Feb 2007;81(2):222-227. Available at;db=PubMed&dopt=Citation&list_uids=17192768.
  35. Nanda K, Amaral E, Hays M, Viscola MA, Mehta N, Bahamondes L. Pharmacokinetic interactions between depot medroxyprogesterone acetate and combination antiretroviral therapy. Fertil Steril. Oct 2008;90(4):965-971. Available at;db=PubMed&dopt=Citation&list_uids=17880953. 
  36. Watts DH, Park JG, Cohn SE, et al. Safety and tolerability of depot medroxyprogesterone acetate among HIV-infected women on antiretroviral therapy: ACTG A5093. Contraception. Feb 2008;77(2):84-90. Available at http://www.ncbi.
  37. Luque AE, Cohn SE, Park JG, et al. Depot medroxyprogesterone acetate in combination with a twice-daily lopinavirritonavir-based regimen in HIV-infected women showed effective contraception and a lack of clinically significant interactions, with good safety and tolerability: results of the ACTG 5283 study. Antimicrob Agents Chemother. Apr 2015;59(4):2094-2101. Available at 
  38. Leticee N, Viard JP, Yamgnane A, Karmochkine M, Benachi A. Contraceptive failure of etonogestrel implant in patients treated with antiretrovirals including efavirenz. Contraception. Apr 2012;85(4):425-427. Available at http://www.ncbi.
  39. McCarty EJ, Keane H, Quinn K, Quah S. Implanon(R) failure in an HIV-positive woman on antiretroviral therapy resulting in two ectopic pregnancies. Int J STD AIDS. Jul 2011;22(7):413-414. Available at pubmed/21729965.
  40. Scarsi KK, Darin KM, Nakalema S, et al. Unintended Pregnancies Observed With Combined Use of the Levonorgestrel Contraceptive Implant and Efavirenz-based Antiretroviral Therapy: A Three-Arm Pharmacokinetic Evaluation Over 48 Weeks. Clin Infect Dis. Mar 15 2016;62(6):675-682. Available at
  41. Vieira CS, Bahamondes MV, de Souza RM, et al. Effect of antiretroviral therapy including lopinavir/ritonavir or efavirenz on etonogestrel-releasing implant pharmacokinetics in HIV-positive women. J Acquir Immune Defic Syndr. Aug 1 2014;66(4):378-385. Available at 
  42. Patel RC, Onono M, Gandhi M, et al. Pregnancy rates in HIV-positive women using contraceptives and efavirenz-based or nevirapine-based antiretroviral therapy in Kenya: a retrospective cohort study. Lancet HIV. Nov 2015;2(11):e474-482. Available at 
  43. Perry SH, Swamy P, Preidis GA, Mwanyumba A, Motsa N, Sarero HN. Implementing the Jadelle implant for women living with HIV in a resource-limited setting: concerns for drug interactions leading to unintended pregnancies. AIDS. Mar 13 2014;28(5):791-793. Available at 
  44. Morrison CS, Nanda K. Hormonal contraception and HIV: an unanswered question. Lancet Infect Dis. Jan 2012;12(1):2- 3. Available at 
  45. Heffron R, Donnell D, Rees H, et al. Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. Lancet Infect Dis. Jan 2012;12(1):19-26. Available at 
  46. World Health Organization. Hormonal contraceptive methods for women at high risk of HIV and living with HIV: 2014 guidance statment. Geneva, Switzerland2014. Available at RHR_14.24_eng.pdf?ua=1.
  47. Stringer EM, Kaseba C, Levy J, et al. A randomized trial of the intrauterine contraceptive device vs hormonal contraception in women who are infected with the human immunodeficiency virus. Am J Obstet Gynecol. Aug 2007;197(2):144 e141-148. Available at;db=PubMed&do pt=Citation&list_uids=17689627.
  48. Curtis KM, Nanda K, Kapp N. Safety of hormonal and intrauterine methods of contraception for women with HIV/ AIDS: a systematic review. AIDS. Nov 2009;23 Suppl 1:S55-67. Available at fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20081389.
  49. U.S. Medical Eligibility Criteria for Contraceptive Use. Recommendations and Reports June 18, 2010 / 59(RR04);1-6; Prepared by Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion: ( 2010.
  50. Heikinheimo O, Lehtovirta P, Aho I, Ristola M, Paavonen J. The levonorgestrel-releasing intrauterine system in human immunodeficiency virus-infected women: a 5-year follow-up study. Am J Obstet Gynecol. Feb 2011;204(2):126 e121- 124. Available at 
  51. Lehtovirta P, Paavonen J, Heikinheimo O. Experience with the levonorgestrel-releasing intrauterine system among HIVinfected women. Contraception. Jan 2007;75(1):37-39. Available at 
  52. Coleman JS, Mwachari C, Balkus J, et al. Effect of the levonorgestrel intrauterine device on genital HIV-1 RNA shedding among HIV-1-infected women not taking antiretroviral therapy in Nairobi, Kenya. J Acquir Immune Defic Syndr. Jun 1 2013;63(2):245-248. Available at 
  53. Ioannidis JP, Abrams EJ, Ammann A, et al. Perinatal transmission of human immunodeficiency virus type 1 by pregnant women with RNA virus loads
  54. Mofenson LM, Lambert JS, Stiehm ER, et al. Risk factors for perinatal transmission of human immunodeficiency virus type 1 in women treated with zidovudine. Pediatric AIDS Clinical Trials Group Study 185 Team. N Engl J Med. Aug 5 1999;341(6):385-393. Available at;db=PubMed&dopt=C itation&list_uids=10432323.
  55. Garcia PM, Kalish LA, Pitt J, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. Women and Infants Transmission Study Group. N Engl J Med. Aug 5 1999;341(6):394- 402. Available at;db=PubMed&dopt=Citation&l ist_uids=10432324.
  56. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. Available at 
  57. Gaur AH, Freimanis-Hance L, Dominguez K, et al. Knowledge and practice of prechewing/prewarming food by HIVinfected women. Pediatrics. May 2011;127(5):e1206-1211. Available at 
  58. Bardeguez AD, Lindsey JC, Shannon M, et al. Adherence to antiretrovirals among US women during and after pregnancy. J Acquir Immune Defic Syndr. Aug 1 2008;48(4):408-417. Available at pubmed/18614923.
  59. Mellins CA, Chu C, Malee K, et al. Adherence to antiretroviral treatment among pregnant and postpartum HIV-infected women. AIDS Care. Sep 2008;20(8):958-968. Available at 
  60. Rana AI, Gillani FS, Flanigan TP, Nash BT, Beckwith CG. Follow-up care among HIV-infected pregnant women in Mississippi. J Womens Health (Larchmt). Oct 2010;19(10):1863-1867. Available at query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20831428.

ASHM - Supporting the HIV, Viral Hepatitis and Sexual Health Workforce